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A SURVEY ON PRACTICAL NUMBERS -

Abstract. A positive integer m is said to be practical if every integer n € (1,m)
is a sum of distinct positive divisors of m. In this paper we give an equivalent
definition of practical number, and describe some arithmetical properties of practical
numbers showing a remarkable analogy with primes. We give an improvement of the
estimate of the gap between consecutive practical numbers and prove the existence of
infinitely many practical numbers in suitable binalj :r_ecurrence sequences, including
the sequences of Fibonacci, Lucas and Pell, '

1. Intrbduction

A positive integer m is said to be practical (see [11]) if every n with 1 <n < m
is a sum of distinct positive divisors of m. Several authors dealt with some aspects of the
theory of practical numbers. P. Erds [3] in 1950 announced that practical numbers have
zero asymptotic density. B. M. Stewart [12] proved the following structure theorem: an
integer m > 2, m = p{?py? -+ pi*, with primes p; < ps < -+ < pi and integers o; > 1,
is practical if and only if py =2 and, fori=2,3,... k, | '

pi So(pps? - pilyt) +1

where o(n) denotes the sum of the positive divisors.of n.

Let P(«) be the counting function of practical numbers:

_P'(a:)z >, 1.

m practical

M. Hausman and H. N, Shapiro [5] showed in 1984 that
i

- P —

(=) < gy

for any 8 < 3(1 — 1/log 2)% ~ 0.0979. M. Margenstern ([6], [7]) proved that
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T

exp {Tég—z-(log log )2 + 3loglog :c} '

P(z)>»

G. Tenenbaum ([13], [14]) improved the above upper and lower bounds as follows:

—5/3—¢

T z - (loglog ) &, P(z) < 103 " loglog x loglog log .

Moreover, Margenstern conjectured that

€T
log

P(z)~ A

with X ~ 1.341, in analogy with the asymptotic behavior of primes.

The author [8] recently proved two Goldbach-type cohjectur_es for practical numbers
first stated in (6]: (i) every even positive integer is a sum of two practical numbers; (ii)
there exist infinitely many practical numbers m such that m—2 and m+2 are also practical.

The purpose of the present paper is to survey some of the above results and to give
some new contributions to the theory of practical numbers.

Slerpmskl [10] and Stewart [12] independently remarked that a positive integer m
is practical if and only if every integer n with 1 < n < a(m) is a sum of distinct positive
divisors of m. Here we give an alternative proof of this equwalence

| We also gllve an 1mprqv_ed version of {8, Lemma 2], which yields a slightly simpler
proof of the Goldbach-type result (i) mentioned above.

We study the gap between consecutive practicai numbers, improving upon a. result
of Hausman and Shapiro [5]. '

‘Finally we prove that some binary recurrence sequences, including the classical
sequences of Fibonacci, Lucas and Pell, contain infinitely many practical numbers. We
incidentally note that it is unknown whether the Fibonacci sequence { 1,1,2, 3, 5,...} and
the Lucas sequence {1,3,4,7,11,...} contain infinitely many prime numbers. Dubner and
Keller [2] recently announced the primality of some “titanic” (i.e. having more than 1000

. dlgItS) Fibonacci and Lucas numbers, such as F9311, F5337, L14449, L7741, L5351, L4793,

Lyrar.

2. An arithmetical resnlt

In this section we give an equivalent definition of practical number. We begin with
the following lemma:
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LEMMA 1. Let m be a positive integer, and let d1 =1 < dy < - < d, = m
be the positive divisors of m. Let d), be the least divisor such that dy > /m. Then
di+dat+--+dp1+1<m,

Pi‘ooﬁ The lelmma' is true for m = 1,2,3,4. Let m > 4; since dp_1 < 1/m we
have '

dy+da+ o Hdpr+1 < 1+2+43+ - +[Vm]+1
_ [\/771]([\/5]*‘"1)_-{_'1
2

VRGmED |
2

<

< m. N

LeMMA 2. (MARGENSTERN)  Let m be a positive integer, and let
di,...,dp,...,d, be as in Lemma 1. Then m is such that every n with 1 < n < o(m) is
a sum of distinct positive divisors of m, if and only if djy, < dy +---+d; + 1 for every
j=1,...,h-1

Proof. For the proof see Margenstern’s paper [7]. #

PROPOSITION 3. A positive integer m is practical if and only if every n with
1 < n < o(m) is a sum of distinct positive divisors of m.

Proof. Since a(m) > m, if m is such that every n with 1 < n < ¢(m) is a sum
of distinct positive divisors of m, a fortiori m is a practical number.

Let m be practical, i.e. every n with 1 < n < m is a sum of distinct positive
divisors of m. Let dy,...,dy,...,d, be as in the preceding lemmas. For any j satisfying -
1<j<h-1wehave di+ - -+d; +1<mbyLemmal. Hence d; +---4+d; +1
is a sum of distinct divisors of m, of which at least one must be > d,r.|.1 It follows that
djit1 <dy+---+dj+ 1, whence, by Lemma 2, every n with 1 < n < o-(m) is a sum of
distinct positive divisors of m. B :

3. The Goldbach problem for practical numbers

In this section we prove that every even positive integer is a sum of two practical

_ numbers.

LEMMA 4. If m is a practical number and n is an integer such that 3 < n <
o(m)+1, then mn is a practical number. In particular, for 1 < n < 2m, mn is practical.
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Proof. The first assertion easily follows from Stewart’s structure theorem; see also
[7, p. 6). Since m — 1 is a sum of distinct divisors of m, we have m + (m — 1) < a(m),
re. 2m < o(m) + 1, and this proves the second assertion. &

The author [8, Lemma 2] proved that if m and m + 2 are practical numbers then
every even integer 2n € [m 3m2] is a sum of two practical numbers. This can be
improved as follows:

LEMMA 5. If m and m + 2 are two practical numbers, then every even integer
2n with 3m? < In < Zm? is a sum of two practical numbers.

Proof. We split up the interval [$m?, Zm?] into the union of three subintervals:
Q) [zm?, m?[; |
Gi) [m?, 3m?] ;
(i) ]3m?, Im?] .
(i) It m = 2, the only even number contained in the interval [1m?, m?[ is 2, which
is a sum of two practical numbers (2 = 1+1). Suppose m > 2 and let 2n € [3m?, m?][.
If 2n = m? or 2n = Lm® + m, we use the decompositions

%mz =m (%m— l) +m,

%—mz +m= n_y(%-m - l) + 2m.
Otherwise we can represent 2n as 3m® + km +2j with 0 < k < im, 1 < j < im,
(k,5) # (0,5m) . Then
n = %1n2+km+23‘=m_(l§m+k—j) +(m+2) 5.

By Lemma 4, 2n is a sum of two practical numbers.
(ii) For the interval [m?, 3m?] see [8, Lemma 2].
i) Ifm = 2, the only even number 'coflltained in the interval |3m?, Im?] is
14, which is a sum of two practical numbers (14 = 6 + 8). Suppose m > 2 and let
2n € |3m?, Im?]. We can represent 2n as {m® - Lm+2; with 1 < k < im,

1<5< %m. Then
2?1:2 —km+ 2 =m(2m—k -—j—3)+(m+2)( m+j),
which is a sum of two practical numbers by Lemma 4. &

TUEOREM 6. Every even positive integer is a sum of two practical numbers.
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Proof. Since (2,4), (4,6), (6,8) are pairs of twin practical numbers, by Lemma 5
every 2n < 126 is a sum of two practical numbers. Suppose we have a sequence {m,}
such that

(l) m; = 16
and for every n
(i) m, is practical
(ii1) m, + 2 is practical
(V) 1 < mpyy/my, <7

Since, by (iv), the intervals [$m2, Im2] and [im2.,, Im2 ;] overlap, every
even positive integer 2n > 128 is a sum of two practical numbers by Lemma 5. We shall
construct a sequence {m,} satisfying (i), (ii), (iii) and a condition slightly stronger than
(iv), ie. 1 <mypq/m, < 2.

Let So = {16, 30, 54, 88, 160}. For every » € Sy, r and r + 2 are practical
numbers. Denote Sy = {rg1, ro,2,..., 7o} With vp; < ro3 < --- < 5. Note that
roi < 2rpi—1 (£=2,3,4,5) and ro5 = %rg)l + 21°g,i. Let ho =Hand, fork=1,2,...,
define

‘ gi.2 2 . _
Sp={5mhori F 21 Py F 3o | 121,200 )
= {Pr1, Pk,2, .y Phhp}

with rp1 < rpo < < Trn,. Purther let S = Uzc_’__o Sy. If we write S = {m,}, with
m, < M,y for every n, one can see that {m, } satisfies (i), (i), (iii) and m,41 < 2my,.
The proof of this is similar to the argument given in [8, Theorem 1]. m

4. k-tuples of twin practical numbers

It is easy to find infinitely many pairs (m, m + 2) of twin practical numbers (see
the proof of Theorem 6 above). The following was conjectured in [6] and [7]:

THEOREM 7. There exist infinitely many practical numbers m such that m — 2
and m + 2 are also practical. B

Proof. For the proof see [8, Theorem 2]. ®

It is shown in [7] that for any even m > 2, at least one of m, m+2, m+4, m+6
is not practical. However, we state the following

CONJECTURE 8. There exist infinitely many 5-tuples of practical numbers of the
form (m—6,m—2,m m+2 m+6).




— ST T o T i e

O e

352 . : G. Melfi

5. Gaps between practical numbers

Here we give an estimate of the gap between consecutive practical numbers. The
same problem for primes has been extensively studied. If {p, } is the sequence of primes,
R. C. Baker and G. Harman [1] recently proved that

pn+1 —-Pn K p?:, 535;

the exponent 0. 535 being of course replaced by 1 5 =+ ¢ under the Riemann Hypothesis. If
{s.} is the sequence of practical numbers, Hausman and Shapiro [5] proved that

Sn+1 - 8n S 233}/2.

We can improve this inequality as follows:

THEOREM 9. Let {s,} be the sequence of practical numbers and let A > 4e=/2,
where v is the Euler-Mascheroni constant. For any sufficiently large n we have

1/2
Sn/

A (loglog s, )1/2°

-Sn+1 — &y <

Proof. Let § > 0 and ¢ < &7 be such that 4c‘1f2(1 + 8)(1 - 6)~ 1f2 < A Let

Ny = Hp< ok p*, where p denotes a prime. By [4, §22.9] we have
oMy
lim ————— =g, .

(1) : - &ﬂ?o NL log log Ni ©

For every k, let m(*) be any integer such that Njy_;|m®), m(*)|N.. It is easy to
see, by induction on k, that Ny is practical for all k > 1, and if & > 3 then m®) is also
pra(_:tlcal. To prove this, note that N; = 2 and Ny = 22 - 3% .52 . 7% are practical, and
m¥) /N;_, is a product of primes not exceeding e*. Since e* < 2Ny _; for k > 3, m(*)
and hence Ny, are practical by repeated application of Lemma 4. '

Since n|m easily implies ¢(n)/n < a(m)/m, we get .

O'(Nk..l) < . a(m(’“)) < O'(Nk)
Ni-1loglog Ny, = m(*) loglogm(*} = Njloglog Np—1

Clearly
loglog Ny_1 ~ loglog Ny, -

whence, by (1),

(B
lll J('n )

v
koo m(*) loglogm(*) e
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Thus there exists an integer kg such that for any & > kg

(2) . min _olm) > c.
M im mloglogm
m| Ny

Let s,, be a practical number such that s, > ¢ N, fo log log Vi, and let & be the least positive
integer such that

Sn,
. > .
N 2 c Ny loglog N,

Further, let

m(l”) =N,.1 < mg'a) < < mgﬂ) =N,

be all the integers satisfying Ny—1|m{™, m{*)|N,, and let » be such that

3 mit) < - i
®) Y em$) log log m&
and ‘
(e 8
) M 2 —

em, Y, loglogm, Y,

Let ¢ and 7 be defined by mi) = UN,_1, N, = rmgf). Clearly 7 > 1. Let " be the
least prime factor of 7, and let p’ be the greatest prime < p” (if p” = 2, we let p’ = 1).
By Bertrand’s postulate we have p' < 2p’. Since Ny = ¥7N._1, we have

t9f=( IT » I ».
pLes—1 ef—lgp<en

whence p'|97, p'{¥, and p/ |m£,”)_. Therefore

(%) |
n Ty 1 _?_,i
/

R Nt

is a multiple of N;_.;. Moreover

. (R.
. - T. my .
Nh'. = ng,h) = pf . E; . p” . p;

is a multiple of p"m{*/p’. Hence

K
" ?n.gf )

p.r‘
for some i > v, since p” > p/. It follows that

—

()
(5) mfﬁi <p"- My < Qm,(,"“_).

pa‘
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Let g = [sn/m{] +1. By () and (4) we have

g < (‘) +1
1)+1
< cmulloglogmﬁ?l-l-l

< 0'( E,'l)l)+l

whence, by Lemma 4, » = ¢ mf,i)l is a practical number. Further

r—sn_mf,’fl ([ ‘:h) ] +1) ~sp > 0,
. v-}-l

whence, by (3) and (3),

Sptl — 8 < P~ 8,

(x) 8n
= m,; | 1-
o ( { 1”9:})1 })

Y
< 2 e

(k)"

em® log log m

For any ¢ > 0 and any sufﬁciently iarge n we have, by (3), (4) and (5),

(6) M 2 = > sl
: cloglogm, ;
and |
m :
. Sn
Sp4l — Sn < 2 y+1 - "
" mi) cm-,(,':l_)l log log mi)
_ 1/2 '
/2 (_log log rn&'ﬂl) ' 5,
(@) = e )
8 cloglogm
M2
S 46—1,12(1_[_6) no. 75
(log log mEf“))

Since, by (5) and (6),

we get

log log m{®) > log (1 _2_5 log s, — log 2) > (1—8)loglog sy,

G. Melfi
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whence, by (7),

1/2
Sn/

(loglog s,)1/2

Sn41~ Sp < A [ ]

REMARK. By Gronwall’s theorem [4, Theorem 323] we have

lim sup _oln)

= e
noco nloglogn

which justifies the choice of the sequence N}, in our proof of Theorem 9.

6. Binary recurrence sequences

Let P, @ be non-zero integers; a pair of Lucas sequences {un(P, Q)}, {v,(P,Q)}
is a pair of binary recurrence sequences defined as

( up(P,Q) =0

T w(PQ)=1

LCtn(P, Q) = Pun-1(P,Q) — Qua_s(P,Q) forn>2
and

((wo(P,Q)=2

Cw(PQ)=P

L (P,Q) = Pun-1(P,Q) — Quas(P,Q) forn>2.
The sequence {u,(P,Q)} is also calied a fundamental Lucas sequence and
{v,(P,Q)} its companion sequence. '
Suppose P? — 4Q # 0 and let «, 3 be the distinct roots of the polynomial

2% - Pr+ Q.
We have -
a™ _ﬁn
U"ﬂ(PJ Q) - o — ﬁ
~ and

. vn(P,Q)=aﬂ+ﬁ”.
Using a shorter notation, we shall write u,, and v, instead of u, (P, Q) and v, (P, Q). For .-
(P, @) = (1,-1), u, and v, are the sequence of Fibonacci numbers and the sequence of
Lucas numbers, respectively; for (P, Q) = (2, -1), u,, is the sequence of Pell numbers [9,
p. 56].

THEOREM 10. Let {us(P, Q)} be a fundamental Lucas sequence. If P —4@Q > 0
and PQ + P is even, then the sequence {|u,(P,Q)|} contains infinitely many practical
numbers.
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Proof. We shall prove that, for sufficiently large k, |uz.o«| is a practical number.
Let {v,} be the companion sequence of {un} Since ugy = Uy, vy for every m, we have,
for k > 0,
k-1
U32k = 3 - H'Uggh
h=0
Also, P? —4Q > 0 implies u3 = P* — Q > 0. Note that v3 = P(P? — 3Q), whence
sgn vz = sgn P. Since P? — 4@ > 0, we have o, ,8 & IR, whence vn = a” + 8" is positive
for n even. Therefore
k-1
l'U-3,ék' = Uz ]'U3| . H Ug.gk .
h=1
Since PQ + P is even, vgy, is even for all m. Denoting v5,, = vam /2, we have
k-1 -
ug.on| = 2% ug Jog| - H Vs.qn.-
h=1
Let 2% > max{us, |v5]}, and define u} = 2¥ ug [v}|- i-t v} o1 - We show, by induction
on j, that u] is practical for j = 1,...,%&. For j = 1 this follows from Lemma 4 applied
- twice, since 2* is practical and ug, [vg] < 28+, Let 1 < j < k — 1, and assume that u} is

practical. We have

uj = 2877 Jug g4

and
u;'l'l = u; Ué,zj,
where | _
Vi = §¥305 = 3 (azj + ﬁQj) (a2j+‘ -a¥ g% & ﬁg.‘Hl) .
Note that -
o 4 8% =y
and

. . i+1 .
_ agj ﬁgj + ﬁgj _ ‘Uf)j+1 . ng

are positive integers (not both odd). In order to prove that u; ; is practical, by Lemma 4
applied twice it suffices to show that

M = max {a +8%7, a¥ - afzjﬁgj + ﬁzj“} <y

nidl

Since z+y <z’ —zy+y?+1 forall 2,y € R, we have

2j+1 ai+1

MSC\! _a25ﬁ23+ﬁd
< g + QY = ¥ g7 4+ 47

F1=vgm — Q¥ +1

q_‘.'+1
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From P2 —4Q >0 and P = o+ 8 # 0 it follows that & # 3. Therefore

azJ . 623

uzf=“-;'_‘_—§*“?50;

i.e. Jugi| > 1. Hence

M < ugs) (a’zﬂ-l +a¥ g¥ + ,6’2“1)
329 _ g8.27
a’d — i " _
= T—g— = |tg.asl < 2879 |ugmi| = uj. M

THEOREM 11. Let {v,(P,Q)} be a companion Lucas sequence with Q = —1 and
P > 0. If there exists a positive integer t such that vas; is practical, then {v,} contains
infinitely many practical numbers.

Proof. We shall prove by induction that, for every & > 0, vgugs; is practical.
For k = 0 this is true by assumption. Suppose that vgxag; is practical for some k. Since
v, = a” 4 4", where « and 3 are the roots of the polynomial £? — Px + (}, we have

U3k+135t = ’03’:351 (C}.'Sk?[n _ a3k35fﬂ3k351 + ﬁg"TOt) )
Define
2?Dpq(y/x) ifz+#0
q’d(w’y): 0 ifr=y=20
v Dealz/y) ify#0,

~ where ¢ is the d-th cyclotomic polynomial and  is the Euler totient function. Note that
¥ Da(y/z) = y?Deg(z/y) if x # 0 and y £ 0.

Since ™ ~ 2%y +y™0 = Be(x,y) ao(w, y) Pax(®,y) Pa10(z,y), we have
k k k k * k
Vax+135; = V3kass q’s(aaktaﬁgkt) Ban(a®t, 327 Bua(a® 7, 8% F) B (0, 577).
Note that, since ¢} = —1,
: k k
Ps(a®*, 8% ") = vargy — (1)
k k :
Bs0(0®F, 8%1) = vargy + (1) vgrg; — (—1) vgegy — 1
k k
‘1’42(053 t: 53 t) = vgkyy + (—1)z’°’3k10t - ("Utﬁaket ~ Ugigy + 1
13 Kk
‘1’210(a3 t; 53 t) = Unkqgt — ("1)tvsk4ez + Ugkgqs + (*l)z‘vskast — V3k36:
+ 2(—1) vgraay — Vargoy + (—1) vgegor + varoar — (—1) varan

i o
+ varpor — (—1)*var1g, + Vark1er — (1) Vgh1as — Vargy ~ Uskgy — L.
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Since P > 0 and @ = —1, for every n > 0 we have v, < v,;, whence
0 < vgeg; — 1.5 ‘I’s(aaki,ﬂakt) < vgkgy + 1 < vgeasy,
0 < vgkgy — Vgrgy + Vargy — 1 < Pgo (aak‘a ﬁakt) < tgkgy + Vargr < Vgkas,
0 < vakyny — Va0t + Vakey —~ Vakg < ‘1‘42(03kt,ﬁ3kt) < Uakyo¢ + Uskiot + 1 < vzkase
Since wvak+igs, Vsrss, P (a3k‘,ﬂ3*‘), i 79N (a?’k‘, ;33"‘), Dy (a?’k‘, ﬁak‘) are positive

integers, we have ®q1, (a3k‘, B*%) > 0, and it is easy to show that &4, (aakz’ 63*1)' <
2v3x45;. By Lemma 4, we have that

M = Var35; P (askt’ﬁs’w) b30 (aakt;ﬂskt) i (a3kt=l33kt)

is a practical number, Since vgrigs; = m(I)zlo(aSk‘,ﬁa‘k‘) to complete the proof it
suffices to show that 2vs.4e; < 2m, and this can be proved by straightforward and tedious
calculations that we omit. ]

The Fibonacci sequence {u,(1,—1)} and the Pell sequence {un(2,—1)} satisfy
the assumptions of Theorem 10. Since Legg = was.1s(1, —1) is a practical number, the
Lucas sequence {v,(1,—1)} satisfies the assumptions of Theorem 11. Therefore there
exist infinitely many practical Fibonacci, Pell and Lucas numbers.

It is interesting to note that the first practical Fibonacci numbers are Fs, Fg, Fia,
Faq, F3p, F36, Fa2, Fys, which, except for F3, have practical subscripts. It is well known
that every prime Fibonacci number, except for Fy, has a prime subscript [4], but there exist
some practical Fibonacci numbers with non-practical subscripts. The least such number is
Fuyq. In fact, 444 = 2% . 3. 37 is not practical, but

Fyqq = 2%.3%2.73.149 - 443 2221 - 4441 - 11987 - 1121101 - 54018521 - 55927129
- 8870470209 - 8336942267 - 81143477963 - 1459000305513721

- is a practical number.
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