Yu. Gliklikh* and N. Vinokurova

ON THE NEWTON-NELSON TYPE EQUATIONS ON VECTOR BUNDLES WITH CONNECTIONS

Abstract. An equation of Newton-Nelson type on the total space of vector bundle with a connection, whose right-hand side is generated by the curvature form, is described and investigated. An existence of solution theorem is obtained.

Introduction

In [5] (see also [6]) a certain second order differential equation on the total space of vector bundle with a connection was constructed and investigated. In some cases it was interpreted as an equation of motion of a classical particle in the classical gauge field. The form of this equation allowed one to apply the quantization procedure in the language of Nelson’s Stochastic Mechanics (see, e.g., [8, 9]). In [7] this procedure was realized for the vector bundles over Lorentz manifolds with complex fibers. The corresponding relativistic-type Newton-Nelson equation (the equation of motion in Stochastic Mechanics) was constructed and the existence of its solutions under some natural conditions was proved. The results of [7] were interpreted as the description of motion of a quantum particle in the gauge field.

In this paper we consider the analogous non-relativistic Newton-Nelson equation in the situation where the base of the bundle is a Riemannian manifold and the fiber is a real linear space. In this case some deeper results are obtained under some less restrictive conditions with respect to the case of [7].

We refer the reader to [2, 6] for the main facts of the geometry of manifolds and to [4, 6] for general facts of Stochastic Analysis on Manifolds.

1. Necessary facts from the Geometry of Manifolds

Recall that for every bundle E over a manifold M, in each tangent space $T_{(m,x)}E$ to the total space E there is a special sub-space $V_{(m,x)}$, called vertical, that consists of the vectors tangent to the fiber E_m (called also vertical). In the case of principal or vector bundle, a connection H on E is a collection of sub-spaces in tangent spaces to E such that $T_{(m,x)}E = H_{(m,x)} \oplus V_{(m,x)}$ at each $(m,x) \in E$ and this collection possesses some properties of smoothness and invariance (see, e.g., [6]).

Denote by \mathcal{M} a Riemannian manifold with metric tensor $g(\cdot, \cdot)$. Let $\Pi : \mathcal{E} \to \mathcal{M}$ be a principal bundle over \mathcal{M} with a structure group G. By \mathfrak{g} we denote the Lie algebra of G. Let a connection H with connection form θ and curvature form $\Phi = D\theta$ be given

*The research is supported in part by the RFBR Grants 10-01-00143 and 12-01-00183
on \(\mathcal{E} \). Here \(D \) is the covariant differential (see, e.g., [2]). Recall that the 1-form \(\theta \) and the 2-form \(\Phi \) are equivariant and take values in the algebra \(g \) of \(G \) and that \(\Phi \) is horizontal (equals zero on vertical vectors).

We suppose \(G \) to be a subgroup of \(GL(k, \mathbb{R}) \) for a certain \(k \). Let \(\mathcal{F} \) be a \(k \)-dimensional real vector space, on which \(G \) acts from the left, and let on \(\mathcal{F} \) an inner product \(b(\cdot, \cdot) \), invariant with respect to the action of \(G \), be given. We suppose that a mapping \(e: \mathcal{F} \to g^* \) (where \(g^* \) is the co-algebra) having constant values on the orbits of \(G \), is given. This mapping is called charge.

Consider the vector bundle \(\pi: Q \to \mathcal{M} \) with standard fiber \(\mathcal{F} \), associated to \(\mathcal{E} \). We denote by \(Q_m \) the fiber at \(m \in \mathcal{M} \). Consider the factorization \(\lambda: \mathcal{E} \times \mathcal{F} \to Q \) that yields the bundle \(Q \) (see [2]). The tangent mapping \(T\lambda \) translates the connection \(H \) from the tangent spaces to \(\mathcal{E} \) to tangent spaces to \(Q \). This connection on \(Q \) is denoted by \(H^Q \).

Recall that the spaces of connection are the kernels of operator \(K^\pi: TQ \to Q \) called connector, that is constructed as follows. Consider the natural expansion of the tangent vector \(X \in T_{(m,q)}Q \) at \((m,q) \in Q \) into horizontal and vertical components \(X =HX + VX \), where \(HX \in H^\pi(m,q) \) and \(VX \in V_{(m,q)} \). Introduce the operator \(p: V_{(m,q)} \to Q_m \), the natural isomorphism of the linear tangent space \(V_{(m,q)} \to T_qQ_m \) to the fiber \(Q_m \) of \(Q \) onto the fiber (linear space) \(Q_m \). Then \(K^\pi X = pVX \).

On the manifold \(Q \) (the total space of bundle) we construct the Riemannian metric \(g^Q \) as follows: in the horizontal subspaces \(H^\pi \) we introduce it as the pull-back \(T^\pi g \), in the vertical subspaces \(V \) – as \(h \) and define that \(H^\pi \) are \(V \) orthogonal to each other.

We denote the projection of tangent bundle \(TM \) to \(\mathcal{M} \) by \(\tau: TM \to \mathcal{M} \) and by \(H^\tau \) the Levi-Civita connection of metric \(g \) on \(\mathcal{M} \). Its connector is denoted by \(K^\tau: T^2M \to TM \). The construction of \(K^\tau \) is quite analogous to that of \(K^\pi \) where \(Q \) is replaced by \(TM \) and \(TQ \) by \(T^2M = TT\mathcal{M} \).

Recall the standard construction of a connection on the total space of bundle \(Q \), based on the connections \(H^\pi \) and \(H^\tau \) (see, e.g., [3, 6]). The connector \(K^Q: T^2Q \to TQ \) of this connection has the form: \(K^Q = K^H + K^V \) where \(K^H: T^2Q \to H^\pi \) and \(K^V: T^2Q \to V \), and the latter connectors are introduced as: \(K^H = T\pi^{-1} \circ K^\pi \circ T^2\pi \) where \(T^2\pi = T(T\pi): T^2Q \to T^2\mathcal{M} \) and \(T\pi^{-1} \) is the linear isomorphism of tangent spaces to \(\mathcal{M} \) onto the spaces of connection \(H^\pi; K^V = p^{-1} \circ K^\pi \circ TK^\pi \).

Recall that \(\lambda \) is a one-to-one mapping of the standard fiber \(\mathcal{F} \) onto the fibers of bundle \(Q \), hence the charge \(e \) is well-defined on the entire \(Q \). Since \(T\lambda \) is also a one-to-one mapping of the connections and \(\Phi \) is equivariant, we can introduce the differential form \(\tilde{\Phi} \) on \(Q \) with values in \(g \) as follows. Consider \((m,q) = \lambda((m,p), f) \) for \((m,p) \in \mathcal{E} \) and \(f \in \mathcal{F} \). For \(X, Y \in T_{(m,q)}Q \) we denote by \(HX \) and \(HY \) their horizontal components. Then we define \(\tilde{\Phi}_{(m,q)}(X,Y) = \Phi_{(m,p)}(T\lambda^{-1}H\pi X, T\lambda^{-1}H\pi Y) \).

Denote by \(\Phi \) the coupling of elements of \(g \) and \(g^* \). Consider the vector \((m,q), X \) tangent to \(Q \) at \((m,q) \). It is clear that \(e((m,q)) \circ \Phi_{(m,q)}(\cdot, X) \) is an ordinary 1-form (i.e., differential form with values in real line). Denote by \(e((m,q)) \circ \Phi_{(m,q)}(\cdot, X) \) the tangent vector to the total space of \(Q \) physically equivalent to the form \(e((m,q)) \circ \tilde{\Phi}_{(m,q)}(\cdot, X) \) (i.e., obtained by lifting the indices with the use of Riemannian metric \(g^Q \)).
LEMMA 1 ([5]). The vector field \(e((m,q)) \Phi_{(m,q)}(\cdot, X) \) is horizontal, i.e., it belongs to the spaces of connection \(H^\pi \).

THEOREM 1 ([7]). Let \((m(t), q(t))\) be a smooth curve in \(Q \). Let \(X(t) \) be the parallel translation of the vector \(X \in T_{(m(t),q(t))}Q \) along \((m(t), q(t))\) with respect to \(H^0 \). (i) Both the horizontal \(HX(t) \) and vertical \(VX(t) \) components of \(X(t) \) are parallel along \((m(t), q(t))\) with respect to \(H^0 \). (ii) The parallel translation of horizontal vectors preserves constant the norms and scalar products with respect to \(g^0 \). (iii) The vector field \(T\pi X(t) \) is parallel along \(m(t) \) on \(M \) with respect to \(H^\pi \).

2. Mean derivatives on manifolds and vector bundles

Consider a stochastic process \(\xi(t) \) with values in \(M \), given on a certain probability space \((\Omega, \mathcal{F}, P)\). By \(\mathcal{B}_\mathbb{F} \) we denote the minimal \(\sigma \)-sub-algebra of \(\sigma \)-algebra \(\mathcal{F} \) generated by the pre-images of Borel sets in \(M \) under the mapping \(\xi(t) : \Omega \to M \) (the “present” or “now” of \(\xi(t) \)) and by \(E(\cdot | \mathcal{B}_\mathbb{F}) \) the conditional expectation with respect to \(\mathcal{B}_\mathbb{F} \).

Recall that the conditional expectation of a random element \(\Theta \) with respect to \(\mathcal{B}_\mathbb{F} \) can be represented as \(\Theta(\xi(t)) \) where \(\Theta \) is the so-called regression introduced by the formula \(\Theta(m) = E(\Theta | \xi(t) = m) \) (see, e.g., [10]).

Specify a point in \(M \) and consider the normal chart \(U_m \) at this point with respect to the exponential mapping of Levi-Civita connection on \(M \). In \(U_m \) construct the following regressions

\[
Y^{U_m}(t, m') = \lim_{\Delta \downarrow 0} E_{\mathcal{B}_\mathbb{F}} \left(\frac{\xi(t + \Delta) - \xi(t)}{\Delta} \mid \xi(t) = m' \right).
\]

\[
U^{*}(t, m') = \lim_{\Delta \downarrow 0} E_{\mathcal{B}_\mathbb{F}} \left(\frac{\xi(t) - \xi(t - \Delta)}{\Delta} \mid \xi(t) = m' \right).
\]

Introduce \(X^0(t, m) = Y^{U_m}(t, m) \) and \(X^0(t, m) = Y^{U_m}(t, m) \). Note that \(X^0(t, m) \) and \(X^0(t, m) \) are vector fields on \(M \), i.e., under the coordinate changes they transform like cross-sections of the tangent bundle \(TM \).

Forward and backward mean derivatives of \(\xi(t) \) are defined by the formulae \(D\xi(t) = \xi^0(t, \xi(t)) \) and \(D\xi(t) = \xi^0(t, \xi(t)) \).

The vector \(v^\xi(t) = \frac{1}{\Delta}(D + D_\xi)\xi(t) \) is called the current velocity of \(\xi(t) \). From the properties of conditional expectation it follows that there exists a Borel measurable vector field (regression) \(\nu^\xi(t, m) \) on \(M \) such that \(v^\xi(t) = \nu^\xi(t, \xi(t)) \).

Introduce the increment \(\Delta\xi(t) \) of process \(\xi(t) \): \(\Delta\xi(t) = \xi(t + \Delta) - \xi(t) \) and the so called quadratic mean derivative \(D_2 \) (see [1, 6]) \(D_2\xi(t) = \lim_{\Delta \downarrow 0} E_{\mathcal{B}_\mathbb{F}} \left(\frac{\Delta\xi(t) \otimes \Delta\xi(t)}{\Delta} \mid \mathcal{B}_\mathbb{F} \right) \). If \(D_2\xi(t) \) exists, it takes values in \((2, 0) \)-tensors.

Everywhere below we are dealing with processes, along which the parallel translation with respect to an appropriate connection is well-posed. Here we use \(\xi(t) \) and parallel translation with respect to the connection \(H^\pi \) and such an assumption is
true, for example, if $\xi(t)$ is an Itô process on \mathcal{M}, i.e., an Itô development of an Itô process in a certain tangent space to \mathcal{M} as it is defined in [6]. Denote by $\Gamma_{t,s}$ the operator of such parallel translation along $\xi(t)$ of tangent vectors from the (random) point $\xi(s)$ of the process to the (random) point $\xi(t)$.

For a vector field $Z(t, m)$ on \mathcal{M} the covariant forward and backward mean derivatives $DZ(t, \xi(t))$ and $D^*Z(t, \xi(t))$ are constructed by the formulae

$$
DZ(t, \xi(t)) = \lim_{\Delta t \to 0} E \left(\Gamma_{t,t+\Delta t} Z(t + \Delta t, \xi(t + \Delta t)) - Z(t, \xi(t)) \ | \ | \mathfrak{N} \right); \\
D^*Z(t, \xi(t)) = \lim_{\Delta t \to 0} E \left(Z(t, \xi(t)) - \Gamma_{t,t-\Delta t} Z(t - \Delta t, \xi(t - \Delta t)) \ | \ | \mathfrak{N} \right).
$$

From formulae (1), (2), (3) and (4) it evidently follows that $T\pi DZ(t, \xi(t)) = D\xi(t)$ and $T\pi D^*Z(t, \xi(t)) = D^*\xi(t)$.

Now consider a stochastic process $\eta(t)$ in the total space of bundle \mathcal{Q} and introduce the process $\xi(t) = \pi \eta(t)$ on \mathcal{M}. Denote by $\Gamma^\eta_{t,s}$ the parallel translation of random vectors from the fiber $\mathcal{Q}_{\xi(s)}$ to the fiber $\mathcal{Q}_{\xi(s)}$ along $\xi(t)$ with respect to connection H^η. For $\eta(t)$ we introduce the covariant mean derivatives by formulae

$$
D\eta(t) = \lim_{\Delta t \to 0} E \left(\Gamma^\eta_{t,t+\Delta t} \eta(t + \Delta t) - \eta(t) \ | \ | \mathfrak{N} \right); \\
D^*\eta(t) = \lim_{\Delta t \to 0} E \left(\eta(t) - \Gamma^\eta_{t,t-\Delta t} \eta(t - \Delta t) \ | \ | \mathfrak{N} \right).
$$

(analogs of (3) and (4)). As above, $v^\eta(t) = \frac{1}{\Delta t} (D + D^*) \eta(t)$ is called the current velocity of $\eta(t)$.

In order to define the mean derivatives of a vector field along $\eta(t)$ on \mathcal{Q} we use the parallel translation $\Gamma^\eta_{t,s}$ of vectors tangent to \mathcal{Q} at $\eta(s)$, to vectors tangent to \mathcal{Q} at $\eta(t)$ along $\eta(t)$ with respect to connection H^η. By analogy with formulae (3) and (4) for a vector field $Z(t, (m, q))$ on \mathcal{Q} we introduce the covariant mean derivatives by formulae

$$
D^\eta Z(t, \eta(t)) = \lim_{\Delta t \to 0} E \left(\Gamma^\eta_{t,t+\Delta t} Z(t + \Delta t, \eta(t + \Delta t)) - Z(t, \eta(t)) \ | \ | \mathfrak{N} \right); \\
D^*_\eta Z(t, \eta(t)) = \lim_{\Delta t \to 0} E \left(Z(t, \eta(t)) - \Gamma^\eta_{t,t-\Delta t} Z(t - \Delta t, \eta(t - \Delta t)) \ | \ | \mathfrak{N} \right).
$$

Lemma 2. $\Gamma^\eta_{t,s}$ translates $H^\eta_{\eta(s)}$ onto $H^\eta_{\eta(t)}$ and $\nabla^\eta_{\eta(s)}$ onto $\nabla^\eta_{\eta(t)}$: the parallel translation of horizontal components preserves the norms and inner products with respect to g^η.

The assertion of Lemma 2 follows from Theorem 1 and from the fact that (see [3, 6]) that the parallel translation along random processes can be described as the limit
of parallel translations along the processes whose sample paths are piece-wise geodesic approximations of the sample paths of the process under consideration.

By symbols \mathbf{D}^H and \mathbf{D}^V we denote the derivatives introduced by formulae (7) and (8), respectively, for the horizontal components of vectors (i.e., taking values in \mathbb{H}^n). By symbols \mathbf{D}^H and \mathbf{D}^V we denote the derivatives for vertical components (i.e., taking values in \mathbb{V}). Thus, $\mathbf{D}^Q = \mathbf{D}^H + \mathbf{D}^V$ and $\mathbf{D}^Q = \mathbf{D}^H + \mathbf{D}^V$.

3. The Newton-Nelson equation on the total space of vector bundle

In the problem under consideration the Newton-Nelson equation takes the form

$$
(9) \quad \left\{ \begin{array}{l}
\frac{1}{2} (\mathbf{D}^Q \mathbf{D}_* + \mathbf{D}^Q \mathbf{D}) \eta(t) = e(\eta(t)) \bullet \Phi_{\eta(t)}(\cdot, \nu^H(t)) \\
\frac{1}{2} D_2 \xi(t) = \frac{h}{m} I
\end{array} \right.,
$$

where $\xi(t) = \pi \eta(t)$ (cf. [8, 9]).

Expand the current velocity ν^H in the right-hand side of (9) into the sum of vertical and horizontal components: $\nu^H = \nu^H_\eta + \nu^V_\eta$, where $\nu^H_\eta \in \mathbb{H}^n$ and $\nu^V_\eta \in \mathbb{V}$. Since $\Phi_{\eta(t)}(\cdot, \cdot)$ is linear in both arguments, $\Phi_{\eta(t)}(\cdot, \nu^H_\eta) = \Phi_{\eta(t)}(\cdot, \nu^H_\eta) + \Phi_{\eta(t)}(\cdot, \nu^V_\eta)$. Then, since the form Φ is horizontal (see Lemma 1) we obtain that $\Phi_{\eta(t)}(\cdot, \nu^V_\eta) = 0$. Thus, the first equation of system (9) is equivalent to the following system:

$$
(10) \quad \frac{1}{2} (\mathbf{D}^H \mathbf{D}_* + \mathbf{D}^H \mathbf{D}) \eta(t) = e(\eta(t)) \bullet \Phi_{\eta(t)}(\cdot, \nu^H_\eta(t)),
$$

$$
(11) \quad \frac{1}{2} (\mathbf{D}^V \mathbf{D}_* + \mathbf{D}^V \mathbf{D}) \eta(t) = 0.
$$

For simplicity of presentation we denote $e(\eta(t)) \bullet \Phi_{\eta(t)}(\cdot, \nu^H_\eta(t))$ by $\alpha_{\eta(t)}(\cdot, \nu^H_\eta(t))$, where, by construction, $\alpha_{\eta(t)}(\cdot, \nu^H_\eta(t))$ is a linear operator in $\mathbb{H}^n_\eta ((1,1)$-tensor).

Introduce the horizontal $(1,2)$-tensor field $v^H T \alpha(\cdot, \cdot)$ on \mathbb{Q}. The vector $\text{tr} \nabla^H \alpha(\cdot, \cdot)$ is horizontal by construction.

THEOREM 2. Let for the tensor field $\alpha_{\eta(\cdot, \tau), \epsilon}(\cdot) \therefore$ there exist a constant $C > 0$ such that $\int^T_0 (||\alpha_{\eta(t), \epsilon}(\cdot)||^2 + ||\text{tr} \nabla^H \alpha_{\eta(t), \epsilon}(\cdot)||^2) dt < C$ for a certain $T > 0$ and every continuous curve $x(t)$ in \mathbb{Q} given on $t \in [0, T]$. Here $\|\alpha_{\eta(t), \epsilon}(\cdot)\|$ is the operator norm (all the norms are generated by g^Q). Let also the connections \mathbb{H}^n and \mathbb{H}^n be stochastically complete (see [6]). Then for every point $(m, q) \in \mathbb{Q}$, every vector $p_0 \in \mathbb{H}^n_{(m, q)}$ and every time instant $t_0 \in (0, T)$ there exists a stochastic process $\eta(t)$ in \mathbb{Q} such that: (i) it is well-defined on $[0, T]$; (ii) $\eta(0) = (m, q)$ and $D\eta(0) = p_0$; (iii) for all $t \in (t_0, T)$ the processes $\eta(t)$ and $\xi(t) = \pi \eta(t)$ satisfy (9); (iv) along $\eta(t)$ the charge $e(\eta(t))$ is constant.

Proof. For simplicity and without loss of generality we suppose that $\frac{h}{m} = 1$.

Consider on the space of continuous curves $C^0([0, T], \mathcal{T}_m \mathcal{M})$ the filtration \mathcal{F}, where for every $t \in [0, T]$ the σ-algebra \mathcal{F}_t is generated by cylinder sets with bases
over [0, t]. Consider the Wiener measure \(\nu \) on the measure space \((C^0([0,T], \mathbb{R}^d), \mathcal{F}_T)\) and so the standard Wiener process \(W_m(t) \) in \(\mathbb{T}^m M \) as the coordinate process on the probability space \((C^0([0,T], \mathbb{R}^d), \mathcal{F}_T, \nu)\). Since \(\mathbb{H}^m \) is stochastically complete, the Itô development \(W^M(t) \) of \(W_m(t) \) with respect to \(\mathbb{H}^m \) on \(M \) is well-posed. Since \(\mathbb{H}^m \) is also stochastically complete, the horizontal lift \(W^Q(t) \) of \(W^M(t) \) onto \(Q \) with respect to \(\mathbb{H}^m \) with initial condition \((m, q)\) is also well-posed. A detailed description of the construction of processes \(W^M(t) \) and \(W^Q(t) \) can be found in [6].

Since \(T \pi : \mathbb{H}^m \rightarrow T_m M \) is a linear isomorphism that defines the metric tensor \(g^\mathbb{H} = g^Q \) in \(\mathbb{H}^m \) by the pull back of \(g \) from \(T_m M \), we can translate the Wiener measure and the Wiener process from \(T_m M \) to \(\mathbb{H}^m \). Denote by \(W(t) \) the Wiener process obtained by this construction. This is a coordinate process on the space of continuous curves in \(\mathbb{H}^m \) with \(\sigma \)-algebra \(\mathcal{F}_t \) and Wiener measure.

For \(t_0 \geq 0 \) we introduce the real-valued function \(t_0(t) \) that equals \(\frac{1}{t_0} \) for \(t < t_0 \) and \(\frac{1}{t} \) for \(t \geq t_0 \). Its derivative \(t'_0(t) \) is equal to 0 for \(t < t_0 \) and to \(-\frac{1}{t^2} \) for \(t \geq t_0 \).

Now consider the following Itô equation in \(\mathbb{H}^m \):

\[
\beta(t) = \beta_0 + \frac{1}{2} \int_0^t \Gamma^\mathbb{H}_{0,s} tr \nabla^\mathbb{H} \alpha_{(s, W_0 q)} (\alpha, \cdot) ds + \int_0^t \Gamma^\mathbb{H}_{0,s} \alpha_{(s, W_0 q)} dW(s) - \frac{1}{2} \int_0^t t_0(s) \beta(s) ds - \frac{1}{2} \int_0^t t_0'(s) W(s) ds.
\]

(12)

Since equation (12) is linear in \(\beta \), it has a strong and strongly unique solution \(\beta(t) \). Since this solution is strong, it can be given on the space of continuous curves in \(\mathbb{H}^m \) equipped with Wiener measure. Consider the following density on the latter space of curves \(\theta(t) = \exp \left(-\frac{1}{2} \int_0^t \beta(s)^2 ds + \frac{1}{2} \int_0^t (\beta(s) \cdot dW(s)) \right) \). From the hypothesis and from Lemma 2 it follows that it is well-posed. Introduce the measure that has this density with respect to the Wiener measure. It is well-known that with the new measure the coordinate process takes the form \(\xi(t) = \int_0^t \beta(s) ds + w(t) \) where \(w(t) \) is a certain Wiener process adapted to \(\mathcal{F}_t \). Denote \(W^Q(t) \), considered with respect to the new measure, by the symbol \(\eta(t) \) and introduce the process \(\xi(t) = \pi \eta(t) \); \(\xi(t) \) is obtained from \(W^M(t) \) by the change of measure. Equation (12) turns into

\[
\beta(t) = \beta_0 + \frac{1}{2} \int_0^t \Gamma^\mathbb{H}_{0,s} tr \nabla^\mathbb{H} \alpha_{(s, W_0 q)} (\alpha, \cdot) ds + \int_0^t \Gamma^\mathbb{H}_{0,s} \alpha_{(s, W_0 q)} \beta(s) ds
\]

\[
+ \int_0^t \left(\Gamma^\mathbb{H}_{0,s} \alpha_{(s, W_0 q)} (\cdot) + \frac{1}{2} t_0(s) \right) dw(s) - \frac{1}{2} \int_0^t t_0(s) \beta(s) ds - \frac{1}{2} \int_0^t t_0'(s) \xi(s) ds.
\]

By construction, \(\eta(0) = (m, q) \) and \(D_\eta(t) = \beta_0 \). The process \(\eta(t) \) satisfies (11) also by construction. The fact that for \(t \in (t_0, T) \) the processes \(\eta(t) \) and \(\xi(t) = \pi \eta(t) \) satisfy (10) and that \(D_2 \xi(t) = I \) follows from the formulae for mean derivatives obtained in [6, Chapters 12 and 18].

Evidently \(\eta(t) \) is the horizontal lift of the process \(\xi(t) \) with respect to connection \(\mathbb{H}^m \) with the initial condition \((m, q)\). Recall that the horizontal lift \(\eta(t) \) of \(\xi(t) \) is a
parallel translation of \((m,q)\) along \(\xi(\cdot)\) with respect to \(H^\pi\). Hence, it can be presented in the form \((\xi(t), b_t(f))\) where \(b_t\) is the horizontal lift of \(\xi(t)\) to \(E\) with respect to connection \(H\) and \(f\) is a certain vector in the standard fiber \(F\). Thus, the sample paths of \(\eta(t)\) belong to an orbit of \(G\) and so the charge \(e\) is constant along \(\eta(t)\).

\[\square\]

References

AMS Subject Classification: 58J65; 60H30; 60H10

Yuri GLIKLIKH,
Department of mathematics, Voronezh State University
Universitetskaya pl. 1, 394006 Voronezh, RUSSIAN FEDERATION
e-mail: yeg@math.vsu.ru

Natalia VINIKUROVA,
Department of physics mathematics and informatics, Kursk State University
Ul. Radishcheva 13, 305416 Kursk, RUSSIAN FEDERATION
e-mail: vinoknata@mail.ru

Lavoro pervenuto in redazione il 22.05.2013