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M. Ruzhansky - J. Wirth T

DISPERSIVE ESTIMATES FOR T-DEPENDENT
HYPERBOLIC SYSTEMS *

Abstract. This note is devoted to the study of time-dependent symaiegperbolic systems
and the derivation of dispersive estimates for their sohsi It is based on a diagonalisation
of the full symbol within adapted symbol classes.

We are going to consider the hyperbolic system

whereA(t,D) denotes a smoothly time-dependent matrix Fourier mudtipdiith first
order symbol
At,&) e C*(Ry x R",C™™M)

subject to certain (natural) assumptions which are desdiéter on in detail. As usual
we denote P= —iox.

Our approach is based on diagonalising the (full) symbdiefiperatorin order
to get a representation of solutions in terms of Fouriegraks and later on to use these
representations to deduce dispersive estimates for gofuti

1. Prerequisites and basic assumptions

1.1. Hyperbolic symbol classes

We make use of the implicitly defined functignfrom

2 (1+t)[E[=N
with a suitable constam and define the zones
3 ZoyplN) = {(LHIt >t} Zpa(N) = {(L,E)0 <t <t}.

In Znyp(N,) we apply a diagonalisation procedure to the full symbol. Basic idea of
this diagonalisation scheme comes from the treatment cragite hyperbolic prob-
lems and is closely related to the approach of [3].

DEFINITION 1. The time-dependent Fourier multiplie(ta) belongs to the
hyperbolic symbol class’‘2{m;,mp} if it satisfies the symbol estimates

a la 1 mp+k
@ fogat. o) <cualtt ™ (1)

TResearch supported by EPSRC EP/E062873/1.
*Itis a pleasure to dedicate this paper to Prof. Luigi Rodindh® occasion of his 60th birthday.

339



340 M. Ruzhansky - J. Wirth

for all multi-indicesa € N" with |a| < ¢; and all natural numbers K ¢, and with

1&Int = max(|§],N/(1+t)). We say it belongs ts,{, 2 (g, mp} if the estimates are
true within the hyperbolic zoneZ,(N).

EXAMPLE 1. A polynomialp(t,&) = ¥ |qj=mha (t)&* with tkh (t) e L*(R) for
k < ¢ belongs tas®*{m,0}.

If the symbol estimates hold for all derivatives we wistg) {my, mp} for
5("';\;;°{m1,mz}. Furthermore, the definition extents immediately to matdiued Fou-
rier multiplier. The rules of the corresponding symbolidccdus are simple conse-
guences of Definition 1 together with (2), (3) and collectedhie following proposi-
tion.

ProPOsITIONL. 1. 5f,§|f2{m1,mz} iS a vector space.

2. (e (my —k Mot 0) < (52 (myme) forall £> k> 0,6, > 61, & > (2 (and

N <N).
3. s {me,me} s (2, mh} s s (42 {m -+ my, mp 4 )

4. DKDYs (/2 {my, mp} — s 4 192 K my — |a], mp + k.

00 o
5. S {12} = LEL{(Znyp(N)).

Of particular importance are the embedding relations ohipaiwith k = ¢.
They constitute a symbolic hierarchy, which is used in tlagdnalisation scheme, cf.
Section 2.1. We define the residual symbol classes

0,0 0,0
Hogy 2 {m) = keﬂzs(,f,) 2{m—k,k}.

1.2. Basic assumptions

We collect our assumptions on the symB@, §). Throughout this note we require

(Al)., ¢, Operator of first order with bounded coefficierMge assume that the matrix
operatorA(t,D) has a smooth symbol satisfying

A(t,&) € s2{1,0}.

Furthermore, we assume that there exists@mogeneous matrif(t, §) with A(t,§)
—Ao(t,&) € 5,61’82{0, 1}. We will always denoteo = &/|&| € S"1.The symbokg(t, &)

is determined by its valuek(t,w) on the cylindeiR ; x S"2.

(A2) Uniform strict hyperbolicity up té = . We assume that the characterisitic roots
(eigenvalues) of the symb#b(t, &) are real and distinct for allandg # 0. In ascend-
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ing order we denote them as(t,&),...,Am(t,§). Furthermore, we assume that

liminf min_|Ai(t,w) —Aj(t,w)| >0
t—o  (egn-1

foralli # j.

PROPOSITIONZ2. Assume (Ak) ., and (A2). For all j=1,...,m the charac-
teristic roots satisfyAj(t,§) € 5,‘3”62{1, 0} and for all i # j their difference satisfies
(Ni(t,&) —Aj(t,8) e 5h°,°’€2{—1, 0}. Furthermore, the eigenprojection ®,§) corre-
sponding ta\(t, €) satisfies Rt,€) € s52{0,0}.

Sketch of proofThe properties of the characteristic roots follow from tpecral es-
timate |Aj(t,w)| < ||A(t,w)|| together with the obvious symbol properties of the co-
efficients of the characteristic polynomial and the unifastrict hyperbolicity. The
eigenprojections can be expressed in terms of the chaistt@oots

e ALE) - N(LE)
PGO=TIN e -ne)

and again the symbolic calculus yields the desired result. O

PROPOSITION3. Assume (AL) ., and (A2). There exists an invertible matrix
M(t,w) € sn{0,0} which diagonalises the symbo(tAw),

A(t,0)M(t,w) = M(t,w)D (t,w), D (t,w) = diag(A1(t,w), ..., Am(t,w)).
Furthermore, its inverse satisfies M(t,w) € sy ’[2{0, 0}.

We require two more assumptions.
(A3) The matrixF (© = diag((D:M~1)M + M~1(A— Ag)M) satisfies

5) sup /St |mF<°>(e,z)deH <o,

(8,8),(t,8)€Znyp(N)

This assumption is independent of the choice of the diaggera¥(t,&) in Proposi-
tion 3 and trivially satisfied wheA(t,§) is symmetric and homogeneous.

(A4) The imaginary part IA(t,€) = 4 (A(t, &) — A*(t,§) satisfies the estimate
ImA(t, &)+ cl[l > 0

within Z,4(N) for sufficiently largeN and some constanot

2. Representation of solutions

Using the partial Fourier transfor# with respect to the spatial variables we can re-
duce the system (1) into a system of ordinary differentialegipns. Our first objective
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is to represent its fundamental solution

within the hyperbolic zoné,€), (s,&) € Znyp(N).

2.1. Diagonalisation scheme

We follow the treatment of [3] to construct the fundamentdliton to (6). To avoid
unnecessary repetitions we just give the correspondinbgrsents.

LEMMA 1. Let M(t,§) be the diagonaliser from Proposition 3. Thep(t,s, &)
=M~L(t,§)Z (1,5 E)M(s,§) satisfies

(7) DtEO(taSaE): (Q)(tva)+R0(t7€))‘£0(tasaz)7 EO(S,S,E) =1

with Ro(t,€) = (DM~1)M + ML A— Ag)M € 5,27 1{0,1}.

LEMMA 2. For eachl < k < /5 — 1 there exists a zone constant N and matrix
valued symbols

o N(t,&) =1+3K_ N (L,8), NW(t,€) € 5302 ™{—p,u}, invertible for all (t, )
€ Znyp(N) and with inverse satisfying N (t,&) € sn{0,0}

o Fo1(t,8) = YICaFW(1.E), FW(L,E) € s " Y~ p+ 1}, diagonal,

o R(t,8) € st~k k+1},
such thatz,(t,s,€) = N X (t,€) Zo(t, s, &)N(s, &) satisfies
(8) DiZk(t,58) = (D (t,&) + R 1(t, &) + Re(t,8)) Zk(t,5,8),  Zk(s,58) =1
for all (t,€),(s,&) € Znyp(N).

REMARK 1. Fork =1 we have in particulaf () (t,&) = diagRo(t, §).

REMARK 2. The proof of this statement is analogous to the correspgnd
statement from [3] and applies the standard diagonalisattbeme from [11], [4], etc.
Under (A1), . we can form the asymptotic sumt,&) ~ 3 N®(t,€) € 5,+“{0,0}
andF(t,&) ~ TFW(t,E) € 5,{,1’“’{0, 1} and the statement can be understood as perfect
diagonalisation moduler,.** {1},

(D¢ — D (t,€) — Ro(t.&))N(t,&) = N(t,&) (D — F(t,§)) modsy“{1}.
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2.2. Estimates of the fundamental solution
We construct the fundamental solutiag(t, s, &) within Znyp(N).

THEOREM 1. Assume (Al).1 for some k> 1. There exists a matrix family
Q«(t,s,&), uniformly bounded and invertible and satisfying

9 IDg ax(t,s, &)l < Clg| 1,
(10) IDg Qu(t te, &) <CIE[T%, [E] <N,

for all |a| <k—1, such that for all(t,&), (S,&) € Znyp(N)

t
(11) £k(t,5,8) = exp(i/s (p(1,8) +Fkl(t,E))dt) Q«(t,s,§).

Proof. We sketch the main steps of the proof. We denote the expahémi{11) by
Zk(t,s,&). Assumption (A3) implies

(12) |2kt s.8)] <1

uniformlyin (t,€), (s,&) € Znyp(N) regardless of the order eandt, becauséy_1(t,§)

—FO(t,8) e 58’0{71, 2} ando (t,§) is real. Furthermore, the transformed equation
(8) implies forqx(t,s,§) the system

DtQk(taSaE):Rk(tvsva)Q_k(taSaE)v Q_k(SaSaE)ZI

with Ry (t,s,§) = %k(s,t,E)Rk(t,E)%k(t,s,E). This system can be solved by means of
the Peano-Baker series

(19) a5y =1+Y i [ xdtns® [ alts
=1 U8 s

tj-1

Rk(tj,s,ﬁ)dtj .- dtodty.

Using (12) it follows thatr(t,s, &) satisfies uniform irs the same bounds &(t,§)
and hence fok > 1 all integrands are uniformly integrable over the hypeithnbne.
This implies that(t, s, &) is uniformly bounded,

t
lts &)l < exp( / Rk<r,z>dr) <1,

and converges locally uniform ifs,€) € Znyp(N) to a limit Qx(e,s,§). Furthermore
by Liouville theorem,

detqk(t,s,&) = exp(/t traceRk(t,E)dr) ~1,
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and all matricegx(t,s,&) are uniformly invertible over th&ny,(N).

It remains to obtain symbol type estimates for derivativegg(t,s,§) with
respect t&. They are achieved by differentiating (13) term by term ggime symbol

estimate oR(t,§) € Sﬁfl’kfl{fk, k+ 1} in combination with

k—1k-1

(1S, E)R(L,€) Ek(t,S.8) € 5y
and|Dftg| < Cq|&| 1191, See [3], [11] or [10] for a more detailed argument. [

{-1,2} uniformins

REMARK 3. The benefit of applyinf steps of diagonalisation is that we obtain
symbol type estimates fdr— 1 derivatives of the amplitudex(t,s,§) (provided that
we assume sufficient smoothnes\f, §) int andg). If we are satisfied with uniform
bounds—which are enough to prove energy estimates—, opeofidiagonalisation
(i.e.,k=1and (Al)>) is enough.

The following theorem clarifies the réle of assumption (A®pvided we have
knowledge about arbitrary many derivatives.

THEOREM2. Assume (Al). and (A2). Then assumption (A3) is equivalent to
the existence of constants ¢ and C such that

cvilllztséVvii<Clv], VveCT
holds true uniformly int,§), (s,§) € Znyp(N) for a sufficiently big N.

Sketch of proofTheorem 1 gives the uniform bound under (A3). Without (A3)&q
tion (12) has to be replaced by a polynomial bound

~ ~ 141\
Eds ol Izt <o 1) s

where the constamt is independent df. Similarly, we obtain with the same exponent

t K
Izt 5891 < exp( [ Iim (Fear) + Rev8ler) < (1)

for all t > s. Choosingk big enough, the polynomial decay of the remainBg(t, &)
becomes strong enough to compensate all increasing texngeaabtain

(14 tsE = rtsEz(sH i [ " E (1,0, E)Re(6,8) £1(6,5,£)00

with
zk(s,8) =1 +i/ r’Zk(t,9,E)Rk(G,E)EK(G,S,E)dG <1
S
The integral in (14) is bounded byl 4 s)X~1(14-t)~K, while the first term has the

lower bound(1+ s)¥(1+t)~K. Chosings big enough implies thaty(t,s,§) is a small
perturbation ofzk(t,s, &).
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Assume now that (A3) is violated. Then we find sequenges «, 5, and§,
such that one matrix entry of the integral in (5) tends toegithor —co. We consider the
+o0 case, and assume w.l.0.g. tisat> sfor sufficiently bigs and that the matrix entry

corresponds to the first diagonal element. Tﬁeﬁu,s‘l,zu)el — o0 and therefore also
E (tw, S, §) Nk (S €)M (S, &) €1 — 0 which contradicts to the uniform upper bound.
Similarly, the—o case contradicts to the lower bound and the statement igpro{!

The estimate in the pseudo-differential zone is based oh (A4
LEmMMA 3. Assume (A4). Then the fundamental solutio(Gdsatisfies
% (t,0.8)] < 1
uniformin(t,&) € Zpa(N).

Proof. We fix §. LetV(t) be the solution to B/ = A(t,§)V, V(0) = Vp. Then with
(+,-) the Euclidean inner product d&i" we obtain from (A4)

IV = ~20mAVY) < 26 V(D)2
for all t with (t,&) € Zpq(N). Hence, by applying Gronwall inequality we obtain
IV (8)[1? < Cl[Vo|[2exp(2ct[E]) < [IVol %
|

Symbol-like estimates for derivatives follow by an induetargument as used
in [3], [11] or [10].

LEMMA 4. Assume (AL),, (A4). Then the estimate
D (,0,8) <CIE[T, & <N

holds true for anyja| < min(¢1,¢2+1).

3. Generalised energy conservation

The results of the previous section witk- 1 allow to conclude upper and lower bounds
for the energy. We only state the result.

THEOREM 3. Assume (AL)—(A4). Then the solution & U (t,x) of (1) sat-
isfies
U ()l 2rn) < CllUol|2(gn)-

Furthermore Jim¢_.c, [[U (t, )| 2(gny = 0 implies L = 0.
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4. Dispersive estimates

We want to explain how to use the information derived in Sec# to derive dispersive
estimates for solutions. We note first, that interestingreges depend only on the
hyperbolic zone. Let for thig € C3(R") be a cut-off functiony(§) = 1 for |§| < 1,
and denotepa(t,£) = X((1+1)[&|/N) andxnyp(t.&) = 1 - Xpa(t, ).

LEMMA 5. Assume (A4). Then solutiond U (t,X) to (1) satisfies
17 Xpa(t, €)U (t,8)] |y < C(L141) " Uol|L1 )
localised to the pseudo-differential zongy?N) (for any choice of N).

Proof. Based onZ : L1(R") — L®(R") and Holder inequality it is sufficient to es-
timate || £ (t,0,&)Xpa(t. &) | 1eny < [1£(t.0,8)l|Lo(ej<g) [Xpalliszn) and the estimate
follows from Lemma 3 and the geometry of the zone. O

This estimate is much stronger than any estimate we couldotxpr the so-
lutionU (t) = .ZY£(t,0,€).Z7 Uy itself. Therefore, we concentrate on the remaining
hyperbolic zone. By Theorem 1 we know that solutions areasgmted as Fourier
integrals of a particular form,

(15) [thpt E Z /el xE+18(L.E)) J.(tva)ljo(a)dz7

where the matrix-valued symb8;(t,€) contains all contributions from the matrices

Q(t,te, &), £(t,0,8), Ne(te, &)M(tg, &), M1(t,E)N~L(t, &) andR_1(t,€) and is sup-
ported withinZnyp(N). Under (Alx_1 2—(A4) it satisfies

ID§B;(t,8)]| <CIE[T,  Jal <k-1,

k the number of diagonalisation steps used in the construclibe phase function is
real, homogeneous and given by

1 t
() = f/o A;(6,€)d0

Fourier integrals of this type can be estimated generalisieas of Sugimoto, [8], [9].
He introduced for a closed surfazewo indices

Yo(2) =sup inf _y(Z;p,n).  ¥(Z) = sup sup y(Z;p,n),
pezNeTpZ PEINETpE

where for any tangent vectogron the surface the numbe(Z; p,n) denotes the order
of contact between the tangept- nR andZ N (p+nR @ NpX). We will give two
estimates related to the statements of [8], [9], taking attoount the improvements
of [5].
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THEOREM4. Let> C R" be a smooth closed surface of codimendion

1. Letyo = Yo(Z). Then it holds for all fe C1(%)
: 1
/zelx'zf(a)dz <Cx) W[ fflce

2. Assum& is convex. Then withi=y(X) and r= [(n—1)/y] + 1the estimate

. n-1
[t <coo VIl
holds true for all fe C'(Z).

REMARK 4. It is enough to hav& € CY*1 in order to prove these statements.
The original proof of Sugimoto for part 2, [8], uses real atialty of the surfacez,
which was improved by [7], [5].

In order to derive dispersive estimates for the expressio(ib), we introduce
thet-dependent family of level sets

s = (g eR"|9(t,&) = 1}.
We restrict for the sake of simplicity to the case of convefases. Then our estimates
are based on the following assumption:
(B) The surfa_ceit(” are strictly convex for all > tg and converge i€"i* to a surface
() with y(=0)) = y;.
THEOREM 5. Assume (ALpk—(A4) in combination with (B) and lefmax =
max y(ZW). If ¢ > k—1> = +1,£ > Ymax+ 1 then the dispersive estimate

,n;l(;,l

Ut e < C(L+ 1) wmex 59| Uollep(en)
holds true for any solution U= U (t,x) of (1) where pe [1,2], pg=p+q and r>
n(1/p—1/q).

REMARK 5. The stabilisation assumption (B) can be weakened to aumify
assumption, in such a sense that for sufficientlytbigty the constants appearing in
the corresponding estimates of Theorem 4 are uniform in

REMARK 6. The corresponding result for non-convex surfaces holds but
gives a much weaker decay rate.

5. Concluding remarks

1 If Ag(t,§) is symmetric, the diagonaliséf(t,§) can be chosen unitary and there-
fore (DM ~1)M is self-adjoint. If in additionA(t, &) = Ao(t, &) is assumed to be homo-
geneous ir§ assumptions (A3) and (A4) are satisfied.
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If we assume thai\(t,D) is a differential operator —which is a very restrictive
assumption here—, we have a representafiing) = Aq(t,§) + Aq1(t) and (A4) is
equivalent to dissipativity, IiA1(t) > 0. If Ag(t,§) is symmetric, (A3) reduces to the
integrability of ImdiagM~1(t,&)A. (t)M(t,&)) > 0.

2 The results apply to hyperbolic equations of higher ordez.ddhsider a homoge-
neous equation of orden,

m—1
(16) Du+ S Y aa()DfDfu=0,  Dfu(0,) = u,
k=0 |a|=m—k

with a, ¢ € 5*/{0,0} and assume uniform strict hyperbolicity. We rewrite it ayss
tem in companion form, its eigenvalugg(t,&) are given by the (real) characteristic
roots associated to (16). Assumption (A4) follows from hgeeity, assumption (A3)
is equivalent to

a7 ~max  sup

J:l“''*""T>O,ooe§a”*1

/T oAt dt| < 0.
0 & }\j('[,(.v.)) —}\k('[,(.v.))
This assumption is necessary to have a generalised enenggreation for (16) un-
der the symbol assumpticaxq € $*{0,0}. In the treatment of [2] the condition
drayq(t) € LY(R,) implies (17).

Equations of higher order with arbitrary lower order termis ¢tonstant coeffi-
cients were considered in [6] and [7].

3 Most of the considerations transfer to problems bearingfsdllations in the clas-
sification of Reissig-Yagdjian [3], [4]. The only major déffence is that the corre-
sponding statement of Theorem 2 is no longer valid.

It is an interesting question whether one can generalisapipeoach of [1]
to higher order equations and larger systems. In this casesdtimates for time-
derivatives are weakened to an improvement of the fatm t) P, p < 1 instead of
p = 1 from Definition 1, but accompanied with a so-called stahtion condition to
treat an extended pseudo-differential zone.

References

[1] HIrROSAWA F., On the asymptotic behavior of the energy for the wave equatigth time-depending
coefficients Math. Ann.339(4) (2007), 819-838.

[2] MATSuYyamMA T. AND RUZHANSKY M., Asymptotic integration and dispersion for hyperbolic equa
tions with applications to Kirchhoff equationpreprint, arXiv:0711.1678, 2007.

[3] REISSIGM. AND SMITH J., LP-LY estimate for wave equation with bounded time dependenti-coef
cient Hokkaido Math. J34 (3) (2005), 541-586.

[4] REISSIGM. AND YAGDJIAN K., Lp-Lq decay estimates for the solutions of strictly hyperbolioaeq
tions of second order with increasing in time coefficiemsth. Nachr214(2000), 71-104.



Dispersive estimates 349

(5]

(6]

[10]

[11]

RuUzHANSKY M., Pointwise van der Corput lemma for functions of severalalslgs to appear in
Functional Analysis and its Applications.

RUZHANSKY M. AND SMITH J., Global time estimates for solutions to equations of dissipaype
In Journées Equations aux Dérivées Partielles”, Exp. No. XHcole Polytech., Palaiseau 2005.

RUZHANSKY M. AND SMITH J., Dispersive and Strichartz estimates for hyperbolic equretiwith
constant coefficientpreprint, arXiv:0711.2138, 2007.

SuGIMOTO M., A priori estimates for higher order hyperbolic equationslath. Z.215 (4) (1994),
519-531.

SuGIMOTO M., Estimates for hyperbolic equations with non-convex chiarégtics Math. Z.222(4)
(1996), 521-531.

WIRTH J., Wave equations with time-dependent dissipation. |: Néeeg¥e dissipation J. Differ.
Equations222(2) (2006), 487-514.

YAGDJIAN K., The Cauchy problem for hyperbolic operatpidathematical Topic4d2, Akademie
Verlag, Berlin 1997.

AMS Subject Classification: 35L05, 35L15.

Michael RUZHANSKY, Jens WIRTH, Department of Mathematikcaperial College London,
180 Queen’s Gate, London, SW7 2AZ, UK
e-mail:m. ruzhansky@imperial.ac.uk, j.wirth@imperial.ac.uk



