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DISPERSIVE ESTIMATES FOR T-DEPENDENT

HYPERBOLIC SYSTEMS ∗

Abstract. This note is devoted to the study of time-dependent symmetric hyperbolic systems
and the derivation of dispersive estimates for their solutions. It is based on a diagonalisation
of the full symbol within adapted symbol classes.

We are going to consider the hyperbolic system

(1) DtU = A(t,D)U, U(0, ·) = U0,

whereA(t,D) denotes a smoothly time-dependent matrix Fourier multiplier with first
order symbol

A(t,ξ) ∈C∞(R+×R
n,Cm×m)

subject to certain (natural) assumptions which are described later on in detail. As usual
we denote Dt =−i∂t .

Our approach is based on diagonalising the (full) symbol of the operator in order
to get a representation of solutions in terms of Fourier integrals and later on to use these
representations to deduce dispersive estimates for solutions.

1. Prerequisites and basic assumptions

1.1. Hyperbolic symbol classes

We make use of the implicitly defined functiontξ from

(2) (1+ tξ)|ξ|= N

with a suitable constantN and define the zones

(3) Zhyp(N) = {(t,ξ)|t ≥ tξ}, Zpd(N) = {(t,ξ)|0≤ t ≤ tξ}.

In Zhyp(N,) we apply a diagonalisation procedure to the full symbol. Thebasic idea of
this diagonalisation scheme comes from the treatment of degenerate hyperbolic prob-
lems and is closely related to the approach of [3].

DEFINITION 1. The time-dependent Fourier multiplier a(t,ξ) belongs to the
hyperbolic symbol classS ℓ1,ℓ2{m1,m2} if it satisfies the symbol estimates

(4)
∣∣∣Dk

t Dα
ξ a(t,ξ)

∣∣∣≤Ck,α|ξ|m1−|α|
N,t

(
1

1+ t

)m2+k
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for all multi-indicesα ∈ Nn with |α| ≤ ℓ1 and all natural numbers k≤ ℓ2 and with
|ξ|N,t = max(|ξ|,N/(1+ t)). We say it belongs toS ℓ1,ℓ2

N {m1,m2} if the estimates are
true within the hyperbolic zone Zhyp(N).

EXAMPLE 1. A polynomialp(t,ξ) = ∑|α|=mhα(t)ξα with tkh(k)
α (t)∈ L∞(R) for

k≤ ℓ belongs toS ∞,ℓ{m,0}.

If the symbol estimates hold for all derivatives we writeS (N){m1,m2} for
S

∞,∞
(N) {m1,m2}. Furthermore, the definition extents immediately to matrix-valued Fou-

rier multiplier. The rules of the corresponding symbolic calculus are simple conse-
quences of Definition 1 together with (2), (3) and collected in the following proposi-
tion.

PROPOSITION1. 1. S ℓ1,ℓ2
(N) {m1,m2} is a vector space.

2. S
ℓ′1,ℓ
′
2

(N′) {m1−k,m2 + ℓ} →֒ S ℓ1,ℓ2
(N) {m1,m2} for all ℓ≥ k≥ 0, ℓ′1≥ ℓ1, ℓ′2≥ ℓ2 (and

N′ ≤ N).

3. S ℓ1,ℓ2
(N) {m1,m2} · S ℓ1,ℓ2

(N) {m′1,m′2} →֒ S
ℓ1,ℓ2
(N) {m1 +m′1,m2 +m′2}.

4. Dk
t Dα

ξ S
ℓ1,ℓ2
(N)
{m1,m2} →֒ S ℓ1−|α|,ℓ2−k

(N)
{m1−|α|,m2 +k}.

5. S 0,0
(N){−1,2} →֒ L∞

ξ L1
t (Zhyp(N)).

Of particular importance are the embedding relations of point 2 with k = ℓ.
They constitute a symbolic hierarchy, which is used in the diagonalisation scheme, cf.
Section 2.1. We define the residual symbol classes

H
ℓ1,ℓ2
(N) {m}=

\

k∈Z

S
ℓ1,ℓ2
(N) {m−k,k}.

1.2. Basic assumptions

We collect our assumptions on the symbolA(t,ξ). Throughout this note we require

(A1)ℓ1,ℓ2 Operator of first order with bounded coefficients.We assume that the matrix
operatorA(t,D) has a smooth symbol satisfying

A(t,ξ) ∈ S ℓ1,ℓ2{1,0}.

Furthermore, we assume that there exists aξ-homogeneous matrixA0(t,ξ) with A(t,ξ)

−A0(t,ξ) ∈ S ℓ1,ℓ2
N {0,1}. We will always denoteω = ξ/|ξ| ∈ Sn−1.The symbolA0(t,ξ)

is determined by its valuesA0(t,ω) on the cylinderR+×Sn−1.

(A2) Uniform strict hyperbolicity up tot = ∞. We assume that the characterisitic roots
(eigenvalues) of the symbolA0(t,ξ) are real and distinct for allt andξ 6= 0. In ascend-
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ing order we denote them asλ1(t,ξ), . . . ,λm(t,ξ). Furthermore, we assume that

liminf
t→∞

min
ω∈Sn−1

|λi(t,ω)−λ j(t,ω)|> 0

for all i 6= j.

PROPOSITION2. Assume (A1)ℓ1,ℓ2 and (A2). For all j= 1, . . . ,m the charac-

teristic roots satisfyλ j(t,ξ) ∈ S ∞,ℓ2
N {1,0} and for all i 6= j their difference satisfies

(λi(t,ξ)−λ j(t,ξ))−1 ∈ S ∞,ℓ2
N {−1,0}. Furthermore, the eigenprojection Pj(t,ξ) corre-

sponding toλ j(t,ξ) satisfies Pj(t,ξ) ∈ S ∞,ℓ2
N {0,0}.

Sketch of proof.The properties of the characteristic roots follow from the spectral es-
timate |λ j(t,ω)| ≤ ||A(t,ω)|| together with the obvious symbol properties of the co-
efficients of the characteristic polynomial and the uniformstrict hyperbolicity. The
eigenprojections can be expressed in terms of the characteristic roots

Pj(t,ξ) = ∏
i 6= j

A(t,ξ)−λi(t,ξ)

λ j(t,ξ)−λi(t,ξ)

and again the symbolic calculus yields the desired result.

PROPOSITION3. Assume (A1)ℓ1,ℓ2 and (A2). There exists an invertible matrix
M(t,ω) ∈ SN{0,0} which diagonalises the symbol A(t,ω),

A(t,ω)M(t,ω) = M(t,ω)D (t,ω), D (t,ω) = diag
(
λ1(t,ω), . . . ,λm(t,ω)

)
.

Furthermore, its inverse satisfies M−1(t,ω) ∈ S ∞,ℓ2
N {0,0}.

We require two more assumptions.

(A3) The matrixF (0) = diag
(
(DtM−1)M +M−1(A−A0)M

)
satisfies

(5) sup
(s,ξ),(t,ξ)∈Zhyp(N)

∥∥∥∥
Z t

s
ImF (0)(θ,ξ)dθ

∥∥∥∥< ∞.

This assumption is independent of the choice of the diagonaliser M(t,ξ) in Proposi-
tion 3 and trivially satisfied whenA(t,ξ) is symmetric and homogeneous.

(A4) The imaginary part ImA(t,ξ) = 1
2i(A(t,ξ)−A∗(t,ξ) satisfies the estimate

ImA(t,ξ)+c|ξ|I ≥ 0

within Zpd(N) for sufficiently largeN and some constantc.

2. Representation of solutions

Using the partial Fourier transformF with respect to the spatial variables we can re-
duce the system (1) into a system of ordinary differential equations. Our first objective
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is to represent its fundamental solution

(6) DtE (t,s,ξ) = A(t,ξ)E (t,s,ξ), E (s,s,ξ) = I

within the hyperbolic zone(t,ξ),(s,ξ) ∈ Zhyp(N).

2.1. Diagonalisation scheme

We follow the treatment of [3] to construct the fundamental solution to (6). To avoid
unnecessary repetitions we just give the corresponding statements.

LEMMA 1. Let M(t,ξ) be the diagonaliser from Proposition 3. ThenE0(t,s,ξ)
= M−1(t,ξ)E (t,s,ξ)M(s,ξ) satisfies

(7) DtE0(t,s,ξ) =
(
D (t,ξ)+R0(t,ξ)

)
E0(t,s,ξ), E0(s,s,ξ) = I

with R0(t,ξ) =
(
DtM−1

)
M +M−1(A−A0)M ∈ S ℓ1,ℓ2−1

N {0,1}.

LEMMA 2. For each1≤ k≤ ℓ2−1 there exists a zone constant N and matrix
valued symbols

• Nk(t,ξ) = I +∑k
µ=1N(µ)(t,ξ), N(µ)(t,ξ)∈ S ℓ1,ℓ2−µ

N {−µ,µ}, invertible for all(t,ξ)

∈ Zhyp(N) and with inverse satisfying N−1
k (t,ξ) ∈ SN{0,0}

• Fk−1(t,ξ) = ∑k−1
µ=0F(µ)(t,ξ), F(µ)(t,ξ) ∈ S ℓ1,ℓ2−µ−1

N {−µ,µ+1}, diagonal,

• Rk(t,ξ) ∈ S ℓ1,ℓ2−k−1
N {−k,k+1},

such thatE k(t,s,ξ) = N−1
k (t,ξ)E0(t,s,ξ)Nk(s,ξ) satisfies

(8) DtE k(t,s,ξ) =
(
D (t,ξ)+Fk−1(t,ξ)+Rk(t,ξ)

)
E k(t,s,ξ), E k(s,s,ξ) = I

for all (t,ξ),(s,ξ) ∈ Zhyp(N).

REMARK 1. Fork = 1 we have in particularF (0)(t,ξ) = diagR0(t,ξ).

REMARK 2. The proof of this statement is analogous to the corresponding
statement from [3] and applies the standard diagonalisation scheme from [11], [4], etc.
Under (A1)ℓ1,∞ we can form the asymptotic sumsN(t,ξ) ∼ ∑N(µ)(t,ξ) ∈ S ℓ1,∞

N {0,0}
andF(t,ξ)∼ ∑F (µ)(t,ξ) ∈ S ℓ1,∞

N {0,1} and the statement can be understood as perfect

diagonalisation moduloH ℓ1,∞
N {1},

(
Dt −D (t,ξ)−R0(t,ξ)

)
N(t,ξ) = N(t,ξ)

(
Dt −F(t,ξ)

)
modH ℓ1,∞

N {1}.



Dispersive estimates 343

2.2. Estimates of the fundamental solution

We construct the fundamental solutionE k(t,s,ξ) within Zhyp(N).

THEOREM 1. Assume (A1)k−1,2k for some k≥ 1. There exists a matrix family
Q k(t,s,ξ), uniformly bounded and invertible and satisfying

‖Dα
ξQ k(t,s,ξ)‖ ≤C|ξ|−|α|,(9)

‖Dα
ξQ k(t, tξ,ξ)‖ ≤C|ξ|−|α|, , |ξ| ≤ N,(10)

for all |α| ≤ k−1, such that for all(t,ξ),(s,ξ) ∈ Zhyp(N)

(11) E k(t,s,ξ) = exp

(
i
Z t

s

(
D (τ,ξ)+Fk−1(τ,ξ)

)
dτ
)
Q k(t,s,ξ).

Proof. We sketch the main steps of the proof. We denote the exponential in (11) by
Ẽ k(t,s,ξ). Assumption (A3) implies

(12) ‖Ẽ k(t,s,ξ)‖. 1

uniformly in (t,ξ),(s,ξ) ∈ Zhyp(N) regardless of the order ofsandt, becauseFk−1(t,ξ)

−F (0)(t,ξ) ∈ S 0,0
N {−1,2} andD (t,ξ) is real. Furthermore, the transformed equation

(8) implies forQ k(t,s,ξ) the system

DtQ k(t,s,ξ) = R k(t,s,ξ)Q k(t,s,ξ), Q k(s,s,ξ) = I

with R k(t,s,ξ) = Ẽ k(s, t,ξ)Rk(t,ξ)Ẽ k(t,s,ξ). This system can be solved by means of
the Peano-Baker series

(13) Q k(t,s,ξ) = I +
∞

∑
j=1

i j
Z t

s
R k(t1,s,ξ)

Z t2

s
R k(t2,s,ξ)

· · ·
Z t j−1

s
R k(t j ,s,ξ)dt j · · ·dt2dt1.

Using (12) it follows thatR k(t,s,ξ) satisfies uniform ins the same bounds asRk(t,ξ)
and hence fork≥ 1 all integrands are uniformly integrable over the hyperbolic zone.
This implies thatQ k(t,s,ξ) is uniformly bounded,

‖Q k(t,s,ξ)‖ . exp

(
Z t

s
Rk(τ,ξ)dτ

)
. 1,

and converges locally uniform in(s,ξ) ∈ Zhyp(N) to a limit Q k(∞,s,ξ). Furthermore
by Liouville theorem,

detQ k(t,s,ξ) = exp

(
Z t

s
traceRk(τ,ξ)dτ

)
≃ 1,
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and all matricesQ k(t,s,ξ) are uniformly invertible over theZhyp(N).

It remains to obtain symbol type estimates for derivatives of Q k(t,s,ξ) with
respect toξ. They are achieved by differentiating (13) term by term using the symbol
estimate ofRk(t,ξ) ∈ S k−1,k−1

N {−k,k+1} in combination with

Ẽ k(t,s,ξ)Rk(t,ξ)Ẽ k(t,s,ξ) ∈ S k−1,k−1
N {−1,2} uniform ins

and|Dα
ξ tξ| ≤Cα|ξ|−1−|α|. See [3], [11] or [10] for a more detailed argument.

REMARK 3. The benefit of applyingk steps of diagonalisation is that we obtain
symbol type estimates fork−1 derivatives of the amplitudeQ k(t,s,ξ) (provided that
we assume sufficient smoothness ofA(t,ξ) in t andξ). If we are satisfied with uniform
bounds—which are enough to prove energy estimates—, one step of diagonalisation
(i.e.,k = 1 and (A1)0,2) is enough.

The following theorem clarifies the rôle of assumption (A3), provided we have
knowledge about arbitrary many derivatives.

THEOREM 2. Assume (A1)0,∞ and (A2). Then assumption (A3) is equivalent to
the existence of constants c and C such that

c‖V‖ ≤ ‖E (t,s,ξ)V‖ ≤C‖V‖, V ∈C
m,

holds true uniformly in(t,ξ),(s,ξ) ∈ Zhyp(N) for a sufficiently big N.

Sketch of proof.Theorem 1 gives the uniform bound under (A3). Without (A3) equa-
tion (12) has to be replaced by a polynomial bound

‖Ẽ k(t,s,ξ)‖,‖Ẽ k(s,t,ξ)‖ ≤Ck

(
1+ t
1+s

)K

, t ≥ s,

where the constantK is independent ofk. Similarly, we obtain with the same exponent

‖E k(t,s,ξ)‖ ≤ exp

(
Z t

s
‖Im(Fk−1(τ,ξ)+Rk(τ,ξ))‖dτ

)
≤C′k

(
1+ t
1+s

)K

for all t ≥ s. Choosingk big enough, the polynomial decay of the remainderRk(t,ξ)
becomes strong enough to compensate all increasing terms and we obtain

(14) E k(t,s,ξ) = Ẽ k(t,s,ξ)Z k(s,ξ)− i
Z ∞

t
Ẽ k(t,θ,ξ)Rk(θ,ξ)E k(θ,s,ξ)dθ

with
Z k(s,ξ) = I + i

Z ∞

s
Ẽ k(t,θ,ξ)Rk(θ,ξ)E k(θ,s,ξ)dθ . 1.

The integral in (14) is bounded by(1+ s)K−1(1+ t)−K , while the first term has the
lower bound(1+s)K(1+ t)−K. Chosingsbig enough implies thatE k(t,s,ξ) is a small
perturbation of̃E k(t,s,ξ).
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Assume now that (A3) is violated. Then we find sequencestµ→ ∞, sµ, andξµ

such that one matrix entry of the integral in (5) tends to either∞ or−∞. We consider the
+∞ case, and assume w.l.o.g. thatsµ > s for sufficiently bigsand that the matrix entry

corresponds to the first diagonal element. ThenẼ k(tµ,sµ,ξµ)e1→ ∞ and therefore also
E (tµ,sµ,ξµ)Nk(sµ,ξµ)M(sµ,ξµ)e1→ ∞ which contradicts to the uniform upper bound.
Similarly, the−∞ case contradicts to the lower bound and the statement is proven.

The estimate in the pseudo-differential zone is based on (A4).

LEMMA 3. Assume (A4). Then the fundamental solution to(6) satisfies

‖E (t,0,ξ)‖. 1

uniform in(t,ξ) ∈ Zpd(N).

Proof. We fix ξ. Let V(t) be the solution to DtV = A(t,ξ)V, V(0) = V0. Then with
(·, ·) the Euclidean inner product onCm we obtain from (A4)

d
dt
‖V(t)‖2 =−2(ImAV,V)≤ 2c|ξ|‖V(t)‖2

for all t with (t,ξ) ∈ Zpd(N). Hence, by applying Gronwall inequality we obtain

‖V(t)‖2≤C‖V0‖2exp(2ct|ξ|) . ‖V0‖2.

Symbol-like estimates for derivatives follow by an inductive argument as used
in [3], [11] or [10].

LEMMA 4. Assume (A1)ℓ1,ℓ2, (A4). Then the estimate

‖Dα
ξE (tξ,0,ξ)‖ ≤C|ξ|−|α|, |ξ| ≤ N

holds true for any|α| ≤min(ℓ1, ℓ2 +1).

3. Generalised energy conservation

The results of the previous section withk= 1 allow to conclude upper and lower bounds
for the energy. We only state the result.

THEOREM 3. Assume (A1)0,2—(A4). Then the solution U= U(t,x) of (1) sat-
isfies

‖U(t, ·)‖L2(Rn) ≤C‖U0‖L2(Rn).

Furthermore,limt→∞ ‖U(t, ·)‖L2(Rn) = 0 implies U0 = 0.
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4. Dispersive estimates

We want to explain how to use the information derived in Section 2 to derive dispersive
estimates for solutions. We note first, that interesting estimates depend only on the
hyperbolic zone. Let for thisχ ∈C∞

0 (Rn) be a cut-off function,χ(ξ) = 1 for |ξ| ≤ 1,
and denoteχpd(t,ξ) = χ((1+ t)|ξ|/N) andχhyp(t,ξ) = 1−χpd(t,ξ).

LEMMA 5. Assume (A4). Then solution U= U(t,x) to (1) satisfies

‖F−1[χpd(t,ξ)Û(t,ξ)]‖L∞(Rn) ≤C(1+ t)−n‖U0‖L1(Rn)

localised to the pseudo-differential zone Zpd(N) (for any choice of N).

Proof. Based onF : L1(Rn)→ L∞(Rn) and Hölder inequality it is sufficient to es-
timate ‖E (t,0,ξ)χpd(t,ξ)‖L1(Rn) ≤ ‖E (t,0,ξ)‖L∞(|ξ|≤ξt)‖χpd‖L1(Rn) and the estimate
follows from Lemma 3 and the geometry of the zone.

This estimate is much stronger than any estimate we could expect for the so-
lution U(t) = F−1[E (t,0,ξ)FU0] itself. Therefore, we concentrate on the remaining
hyperbolic zone. By Theorem 1 we know that solutions are represented as Fourier
integrals of a particular form,

(15) F
−1[χhyp(t,ξ)Û(t,ξ)] =

m

∑
j=1

Z

ei(x·ξ+tϑ j (t,ξ))B j(t,ξ)Û0(ξ)dξ,

where the matrix-valued symbolB j(t,ξ) contains all contributions from the matrices
Q k(t, tξ,ξ), E (tξ,0,ξ), Nk(tξ,ξ)M(tξ,ξ), M−1(t,ξ)N−1(t,ξ) andFk−1(t,ξ) and is sup-
ported withinZhyp(N). Under (A1)k−1,2k–(A4) it satisfies

‖Dα
ξ B j(t,ξ)‖ ≤C|ξ|−|α|, |α| ≤ k−1,

k the number of diagonalisation steps used in the construction. The phase function is
real, homogeneous inξ and given by

ϑ j (t,ξ) =
1
t

Z t

0
λ j(θ,ξ)dθ.

Fourier integrals of this type can be estimated generalising ideas of Sugimoto, [8], [9].
He introduced for a closed surfaceΣ two indices

γ0(Σ) = sup
p∈Σ

inf
η∈TpΣ

γ(Σ; p,η), γ(Σ) = sup
p∈Σ

sup
η∈TpΣ

γ(Σ; p,η),

where for any tangent vectorη on the surface the numberγ(Σ; p,η) denotes the order
of contact between the tangentp+ ηR andΣ∩ (p+ ηR⊕NpΣ). We will give two
estimates related to the statements of [8], [9], taking intoaccount the improvements
of [5].
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THEOREM 4. Let Σ⊂ Rn be a smooth closed surface of codimension1.

1. Letγ0 = γ0(Σ). Then it holds for all f∈C1(Σ)
∣∣∣∣
Z

Σ
eix·ξ f (ξ)dξ

∣∣∣∣≤C〈x〉−
1
γ0 ‖ f‖C1.

2. AssumeΣ is convex. Then withγ = γ(Σ) and r= ⌈(n−1)/γ⌉+1 the estimate
∣∣∣∣
Z

Σ
eix·ξ f (ξ)dξ

∣∣∣∣≤C〈x〉−
n−1

γ ‖ f‖Cr

holds true for all f∈Cr(Σ).

REMARK 4. It is enough to haveΣ ∈Cγ+1 in order to prove these statements.
The original proof of Sugimoto for part 2, [8], uses real analyticity of the surfaceΣ,
which was improved by [7], [5].

In order to derive dispersive estimates for the expressionsin (15), we introduce
thet-dependent family of level sets

Σ( j)
t = {ξ ∈ R

n | ϑ j (t,ξ) = 1}.
We restrict for the sake of simplicity to the case of convex surfaces. Then our estimates
are based on the following assumption:

(B) The surfacesΣ( j)
t are strictly convex for allt ≥ t0 and converge inCγ j +1 to a surface

Σ( j) with γ(Σ( j)) = γ j .

THEOREM 5. Assume (A1)ℓ,2k–(A4) in combination with (B) and letγmax =

maxj γ(Σ( j)). If ℓ≥ k−1≥ n−1
γmax

+1, ℓ≥ γmax+1 then the dispersive estimate

‖U(t, ·)‖L∞ ≤C(1+ t)−
n−1
γmax

( 1
p− 1

q)‖U0‖Hr,p(Rn)

holds true for any solution U= U(t,x) of (1) where p∈ [1,2], pq= p+ q and r>
n(1/p−1/q).

REMARK 5. The stabilisation assumption (B) can be weakened to a uniformity
assumption, in such a sense that for sufficiently bigt ≥ t0 the constants appearing in
the corresponding estimates of Theorem 4 are uniform int.

REMARK 6. The corresponding result for non-convex surfaces holds true, but
gives a much weaker decay rate.

5. Concluding remarks

1 If A0(t,ξ) is symmetric, the diagonaliserM(t,ξ) can be chosen unitary and there-
fore (DtM−1)M is self-adjoint. If in additionA(t,ξ) = A0(t,ξ) is assumed to be homo-
geneous inξ assumptions (A3) and (A4) are satisfied.
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If we assume thatA(t,D) is a differential operator —which is a very restrictive
assumption here—, we have a representationA(t,ξ) = A0(t,ξ) + A1(t) and (A4) is
equivalent to dissipativity, ImA1(t) ≥ 0. If A0(t,ξ) is symmetric, (A3) reduces to the
integrability of Imdiag(M−1(t,ξ)A1(t)M(t,ξ)) ≥ 0.

2 The results apply to hyperbolic equations of higher order. We consider a homoge-
neous equation of orderm,

(16) Dm
t u+

m−1

∑
k=0

∑
|α|=m−k

ak,α(t)Dk
t Dα

x u = 0, Dk
t u(0, ·) = uk,

with ak,α ∈ S ∗,ℓ{0,0} and assume uniform strict hyperbolicity. We rewrite it as a sys-
tem in companion form, its eigenvaluesλ j(t,ξ) are given by the (real) characteristic
roots associated to (16). Assumption (A4) follows from homogeneity, assumption (A3)
is equivalent to

(17) max
j=1,...,m

sup
T>0,ω∈Sn−1

∣∣∣∣
Z T

0
∑
k6= j

∂tλ j(t,ω)

λ j(t,ω)−λk(t,ω)
dt

∣∣∣∣< ∞.

This assumption is necessary to have a generalised energy conservation for (16) un-
der the symbol assumptionak,α ∈ S ∗,∞{0,0}. In the treatment of [2] the condition
∂tak,α(t) ∈ L1(R+) implies (17).

Equations of higher order with arbitrary lower order terms but constant coeffi-
cients were considered in [6] and [7].

3 Most of the considerations transfer to problems bearing fast oscillations in the clas-
sification of Reissig-Yagdjian [3], [4]. The only major difference is that the corre-
sponding statement of Theorem 2 is no longer valid.

It is an interesting question whether one can generalise theapproach of [1]
to higher order equations and larger systems. In this case the estimates for time-
derivatives are weakened to an improvement of the form(1+ t)−p, p < 1 instead of
p = 1 from Definition 1, but accompanied with a so-called stabilisation condition to
treat an extended pseudo-differential zone.
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In Journées “́Equations aux Dérivées Partielles”, Exp. No. XII. Ecole Polytech., Palaiseau 2005.

[7] RUZHANSKY M. AND SMITH J., Dispersive and Strichartz estimates for hyperbolic equations with
constant coefficients, preprint, arXiv:0711.2138, 2007.

[8] SUGIMOTO M., A priori estimates for higher order hyperbolic equations. Math. Z.215 (4) (1994),
519–531.

[9] SUGIMOTO M., Estimates for hyperbolic equations with non-convex characteristics. Math. Z.222(4)
(1996), 521–531.

[10] WIRTH J., Wave equations with time-dependent dissipation. I: Non-effective dissipation. J. Differ.
Equations222(2) (2006), 487–514.

[11] YAGDJIAN K., The Cauchy problem for hyperbolic operators, Mathematical Topics12, Akademie
Verlag, Berlin 1997.

AMS Subject Classification: 35L05, 35L15.

Michael RUZHANSKY, Jens WIRTH, Department of Mathematics,Imperial College London,
180 Queen’s Gate, London, SW7 2AZ, UK
e-mail: m.ruzhansky@imperial.ac.uk, j.wirth@imperial.ac.uk


